
Writing an InputSprocket Driver
In order to write a driver for InputSprocket, you should already be familiar with the Code Fragment Manager and the
InputSprocket application interfaces. If you are writing a driver for an ADB device you should be familiar with the ADB
Manager.

An InputSprocket driver is a CFM fragment with specific file type and creator (‘shlb’ and ‘insp’). All drivers must
be located in the same folder as InputSprocketLib, which must be the Extensions folder. Drivers should link with
InputSprocketLib or InputSprocketStubLib (they are identical, previously there was a stub library named
InputSprocketDriverStubLib, which contained the entry points for Drivers, you may now use InputSprocketLib). You will
need InputSprocket.h and InputSprocketDriver.h. It is recommended that drivers require InputSprocket 1.2 or later,
avoiding compatibility issues with certain functions not being available. Drivers which use the Apple Desktop Bus (ADB)
will probably want to include InputSprocketDefer.h and link with InputSprocketDeferLib.

A driver must handle six major tasks: CFM initialization, CFM termination, pushing data, ‘high level’ Init, ‘high level’ Stop,
and the configure dialog user interface. There are two ways an application can use InputSprocket: ‘high’ or ‘low’ level.
The ‘low level’ interface corresponds to a representation of the device based on what axis, buttons, etc. it has. The ‘high
level’ interface corresponds to the ‘needs’ of the application. A driver’s low level interface is based on the devices and
elements it creates with ISpDevice_New and ISpElement_New. The high level interface is only valid between Init
and Stop calls, and is based on the needs list provided by the application. Only the driver knows exactly how it has been
configured, and when it is active, it is responsible for pushing data to those virtual elements for each need to which it is
configured, in addition to the low level elements.

CFM Initialization

During CFM initialization, an ISp driver should determine what devices are connected and call ISpDevice_New for
each detected device. The ISp driver should then call ISpElement_New for each element of the device (i.e., button,
axis, dpad, delta). The data type that is closest to the actual physical action on the device should be chosen. A device
should be initially active, and immediately start pushing data.

One parameter to ISpDevice_New is the ‘metahandler’ function pointer. Within the ISpDevice_New call, the
device’s metahandler function is called once for each driver selector corresponding to an entry point into the driver (e.g.
kISpSelector_Init). The driver should return NULL for the function pointer if the entrypoint is not implemented,
otherwise return a pointer to it’s corresponding function .

A driver should check using ISpGetVersion to verify that InputSprocket at least some minimum version. Drivers
should only return an error if CFM does, specifically, they should return noErr if they find no devices.

InputSprocket does not currently support ‘hot-plugging’ when the application is running, but a future version may do so.
If this occurs, most likely a driver will have to be marked as ‘hot-plug aware’ and it will behave differently at CFM
Initialization time.

CFM Termination

During CFM termination, for each device created, an ISp driver should deactivate itself if necessary, then call
ISpElement_Dispose for each element created and then call ISpDevice_Dispose.

Pushing Data

A driver is responsible for pushing data to InputSprocket whenever the state of a particular element has changed. If
driver Init has been called and has not been followed by a corresponding driver Stop, a driver is also responsible for
pushing data to the virtual elements corresponding to the needs to which it has been configured.

When the state of an element changes, a driver should call ISpUptime to determine the time value that the change has
occurred and then call either ISpElement_PushSimpleData or ISpElement_PushComplexData to push the data. If the
high level is valid, and that element has been configured to a need, the driver should make the same call pushing data to
the corresponding virtual element. All three of these API calls are interrupt safe.

The driver calls Tickle and InterruptTickle are provided as a convenience to get regular execution time. They are
available with InputSprocket version 1.03 and later. If a driver implements InterruptTickle, if will be called approximately
90 times a second. Tickle will be called once for each time the application calls ISpTickle. If a driver relies on Tickle
being called, it should set its device class to kISpDeviceClass_Tickle when it is created. Some applications will
not call ISpTickle and so will not work with those drivers. In the currently implementation, InputSprocket deactivates
kISpDeviceClass_Tickle devices and it is the responsibility of the application to reactivate them if it calls
ISpTickle. InterruptTickle is only called at ‘Virtual Memory (VM) safe’ times.

However, you must be aware of any callbacks you install yourself, and whether they can occur during ‘VM unsafe’ times.
If so, your driver must hold itself as resident. Drivers which use ADB can include InputSprocketDefer.h which provides
services so that ADB handlers are deferred until paging safe time. This way, the driver does not have to be held (although
it will be resident under most conditions if it is actually being called many times a second). Drivers which use USB
through USBHIDUniversalModule will automatically be deferred until ‘VM safe’ times, so do not have to worry about this
problem.

When pushing data to axis or delta types, care should be taken to make sure the ISp coordinate system is being followed
correctly. This is important so that the (high level) auto-configuration in driver Init works correctly, and so that
applications using the low-level interface get a correct 'feel' for what the device really does. Notes on the coordinate
system appear later in this document.

SetActive will be called to activate and deactivate a device. Devices should only push data when they are active.

High Level Init

Writing an InputSprocket Driver (7/16/98)

Page 2

InputSprocket calls each device’s Init function after the application calls ISpInit. The driver should make a local copy
of the needs array and the corresponding virtual elements array.. It should allocate (in the system heap) any memory
used only in the high level. At this time, the driver should autoconfigure itself to the needs, taking advantage of the need
labels and other provided information. Drivers are responsible for doing the data conversion between the ‘native’ type of
an element and the data type for a need when pushing data to a virtual element.

There are several guidelines which should be followed during autoconfiguration. If the value of the used array
corresponding to a need is true, it means some previous device fulfilled the need. If the value is true and the
kISpNeedFlag_NoMultiConfig bit is set in the need structure for that need, the device should not attempt to
autoconfigure to the need. The driver should set used to true for each need it fulfills on autoconfiguration. The need
flags such as kISpNeedFlag_Button_AlreadyAxis combined with the need group should be used to
exclude autoconfiguring multiple elements from the same device to the same need. Needs with the same group
should be autoconfigured together when possible. If any needs with a non-zero playerNum are autoconfigured, then
no needs with a different non-zero playerNum should be autoconfigured (for the same device).

After autoconfiguring, the device should immediately push initial values to the corresponding virtual elements and from
that point push data to those virtual elements whenever data is pushed to the elements to which they are configured.

Until the high level is invalidated with the Stop call, InputSprocket may make the GetState, and SetState calls. The driver
should package it’s configuration state into a provided buffer when the GetState call is made. If the buffer size is too
small, it should just change it to the needed size and return an error. Otherwise, it should change the size to the amount
of the buffer used, and place the data into the buffer. This data will later be passed to the driver in a SetState call when the
driver should change it’s configuration to a previous setting.

High Level Stop

InputSprocket calls each device’s Stop function after the application calls ISpStop. The driver should suspend
pushing data to all virtual elements and deallocate memory allocated in Init.

Configure Dialog User Interface

The majority of driver function calls are related to the Configure dialog. These function calls will only happen while the
high level is valid (i.e. ISpInit has been called without a subsequent ISpStop). When the application calls
ISpConfigure, a dialog is presented with a scrolling list of devices with one device selected. The selected device is
responsible for the primary pane of the dialog, handling all events and drawing related to that area.

The GetSize function is called to determine the preferred and minimum sizes of the pane area used by the device. If the
pane area will not fit on any available display device, then that device is removed from the high level list. The
BeginConfiguration function is then called for each device. The configure dialog is resized and shown. The GetIcon

Writing an InputSprocket Driver (7/16/98)

Page 3

function is called for each device to determine the icon to be shown in the scrolling list. Then the Show function is called
for the selected device. This is a good time to call AppendDITL.

All events returned in the dialog filter are passed to the HandleEvent function to give the device a chance to handle
them. If update events are not handled (the recommended option to avoid extra flicker), InputSprocket will make the
device Draw function call from within a BeginUpdate/EndUpdate pair. Unhandled mouse clicks will be passed to
the Click function. If the device called AppendDITL to add items to the dialog and those items are returned by
InputSprocket’s ModalDialog call, then it will call the DialogItemHit function.

The device should maintain a ‘dirty’ variable which is set whenever any configuration information is changed, and
returned and cleared when the Dirty call is made. When a different device is selected in the list, the old device will
receive a Hide function call and the new device a Show function call. When the device is closed, every device will
receive a EndConfiguration call.

Writing an InputSprocket Driver (7/16/98)

Page 4

ADB Specific Notes

Drivers should identify their devices by handler ID and original ADB address. InputSprocket does not currently support a
method for arbitrating between different InputSprocket drivers for the same ADB device other than using
InputSprocketDeferLib to install your service routine. If the device can change handler IDs (if it starts out looking like a
mouse for example), in the CFM initialization, the driver should change it’s handler ID, so later ISp drivers (like the
mouse driver) do not try to read the same device. When ADBReInit is called, all devices will get two ReInit function
calls, one before and one after the bus reset happens. Just before the bus reset, the device should remove any patches it
installed. After the reset, the driver should search the bus to see if the device is still present. Since one driver may be
responsible for multiple devices, and ReInit will be called for each device, care must be taken to make sure the
remapping happens correctly.

Driver Function Reference

kISpSelector_Init InputSprocket calls each device’s (high level) Init function after
the application calls ISpInit. This signifies that the high level
interface is valid.

kISpSelector_Stop InputSprocket calls each device’s (high level) Init function after
the application calls ISpStop. This signifies that the high level
interface now invalid.

kISpSelector_GetSize InputSprocket calls each device’s GetSize function prior to
bringing up the configure dialog to determine the visual area the
device needs in the configure dialog.

kISpSelector_HandleEvent While the configure dialog is up, this function is passed events
from InputSprocket’s dialog filter and should return true if they
are handled. In many cases, a driver can always return false.

kISpSelector_Show When a device is selected in the configure dialog, this function is
called. The device should present it’s user interface in the
specified area, possibly calling AppendDITL.

kISpSelector_Hide When a different device is selected in the configure dialog, this
function will be called, notifying the device to remove it’s user
interface, and if necessary call ShortenDITL.

kISpSelector_BeginConfiguration This function is called once for each device, just prior to bringing
up the configure dialog.

kISpSelector_EndConfiguration This function is called once for each device, just prior to closing
the configure dialog.

kISpSelector_GetIcon This function should return the icon family ID for the icon to be
used to represent the device in the configure dialog.

kISpSelector_GetState This function should return the current device specific
configuration in a buffer.

Writing an InputSprocket Driver (7/16/98)

Page 5

kISpSelector_SetState The device should set it’s configuration to that specified by the
buffer.

kISpSelector_Dirty The device should return if the configuration has changed and
clear it’s dirty variable.

kISpSelector_SetActive The device should start/stop pushing data and install/remove any
applicable patches to activate/deactivate.

kISpSelector_DialogItemHit A dialog item (from an appended DITL) has been clicked in the
configure dialog.

kISpSelector_Tickle The device receives a (wait next event time) tickle every time
the application calls ISpTickle. Available in InputSprocket
1.03 or later.

kISpSelector_InterruptTickle The device receives a tickle at interrupt time ninety times a
second. Available in InputSprocket 1.03 or later.

kISpSelector_Draw The device should draw in the specified area of the configure
dialog. Available in InputSprocket 1.03 or later.

kISpSelector_Click A mouse click was detected in the configure dialog. Available in
InputSprocket 1.03 or later.

kISpSelector_ADBReInit The ADB bus is being reset, the device receive a call before to
remove itself and after to search the bus to see if the hardware is
still connected. Available in InputSprocket 1.2 or later.

Driver API Reference

ISpDevice_New Creates a new InputSprocket device. Should only be called from
CFM initialization of the ISp driver.

ISpDevice_Dispose Disposes an InputSprocket device. Should only be called from
CFM termination of the ISp driver.

ISpElement_New Adds the specified element to the ISp device. Should only be
called from CFM initialization of the ISp driver.

ISpElement_Dispose Removes the specified element to the ISp device. Should only
be called from CFM termination of the ISp driver.

ISpElement_PushSimpleData Pushes UInt32 size data to the specified element (real or virtual).
Can be (and usually is) called at interrupt time.

ISpElement_PushComplexData Pushes arbitrary size data to the specified element (real or
virtual). Can be (and usually is) called at interrupt time..

ISpUptime Returns a 64 bit number for the current machine time which is
machine specific. This can be converted to microseconds with
ISpTimeToMicroseconds.

Writing an InputSprocket Driver (7/16/98)

Page 6

InputSprocket Coordinate System

Below is a picture of the coordinate system which is much easier to understand than any textual description.

X

Z

Y

Ry

Rx

Rz

The origin is in the bottom left corner, the x-axis is the horizontal aspect of the screen, and the y-axis is the vertical aspect
of the screen. The z-axis is straight into the screen with increasing values. Rotation about the x-axis (in the plane of yz) is
in the direction of the shortest arc from y to x. Rotation about the y-axis (in the plane of xz) is in the direction of the
shortest arc from z to x. Rotation about the z-axis (in the plane of xy) is in the direction of the shortest arc from y to x. The
purpose of these choices for direction of rotation was to keep them consistent with the 'left' and 'right' orientation of the
x-axis.

Therefore, roll is the same as Rz, with left roll being at value kISpAxisMinimum, and right roll being at
kISpAxisMaximum (and zero roll at kISpAxisMiddle); pitch is the same as Rx with pitch up being at value
kISpAxisMinimum, zero pitch at kISpAxisMiddle and pitch down being at kISpAxisMaximum; and yaw is the
same as Ry with left yaw being at value kISpAxisMinimum, zero yaw at kISpAxisMiddle, and right yaw being at
kISpAxisMaximum. New label constants placed in the header file for convenience and clarity:
ISpElementLabel_Axis_Pitch, ISpElementLabel_Axis_Roll and ISpElementLabel_Axis_Yaw, which are equal to the
ISpElementLabel_Axis_Rz, ISpElementLabel_Axis_Rx, and ISpElementLabel_Axis_Ry constants.

In the low-level interface, Joysticks should now report to have Rz (roll) and Rx (pitch) axis instead of x and y axis. Mice

Writing an InputSprocket Driver (7/16/98)

Page 7

should report x and y axis, but trackballs should Rz and Rx.

In auto-configure (high-level interface), when the exact type is not one of the needs of the game, drivers like mice
should map their x axis to Rz (roll) and their y axis to Rx (pitch). If the game asks for x and y axis drivers like joysticks
should substitute their Rz and Rx. Rudders and yaw should be treated as equivalent. Throttle and trim axis should be
mapped (in both directions) to z axis and Rx (pitch) [thus 'positive' z-axis movement or Rx rotation on a device, i.e. away
from the user, translates to positive throttle]. Developers using the low level interface should be making similar
mappings.

In Apple’s drivers, in the configure dialog (high level) unless the option key is down when the user clicks on a popup, the
driver will not show axis with labels which are 'inappropriate'. The following table describes which axis assignments are
appropriate (this is only for axis types, delta types are similar):

Element label 'Appropriate' axis need labels
x axis x axis, Rz (roll), Ry (yaw), rudder, *
y axis y axis, z axis, Rx (pitch), *
z axis z axis, y axis, Rx (pitch), *
Rx (pitch) Rx (pitch), z axis, y axis, *
Ry (yaw) Ry (yaw), rudder, x axis, Rz (roll), *
Rz (roll) Rz (roll), x axis, Ry (yaw), rudder, *
rudder rudder, Ry (yaw), x axis, Rz (roll), *
all others any label

*gas, brake, clutch, throttle, trim, and none labels will be allowed to be assigned to any axis

Writing an InputSprocket Driver (7/16/98)

Page 8

